A Comparison between Transcriptome Sequencing and 16S Metagenomics for Detection of Bacterial Pathogens in Wildlife
نویسندگان
چکیده
BACKGROUND Rodents are major reservoirs of pathogens responsible for numerous zoonotic diseases in humans and livestock. Assessing their microbial diversity at both the individual and population level is crucial for monitoring endemic infections and revealing microbial association patterns within reservoirs. Recently, NGS approaches have been employed to characterize microbial communities of different ecosystems. Yet, their relative efficacy has not been assessed. Here, we compared two NGS approaches, RNA-Sequencing (RNA-Seq) and 16S-metagenomics, assessing their ability to survey neglected zoonotic bacteria in rodent populations. METHODOLOGY/PRINCIPAL FINDINGS We first extracted nucleic acids from the spleens of 190 voles collected in France. RNA extracts were pooled, randomly retro-transcribed, then RNA-Seq was performed using HiSeq. Assembled bacterial sequences were assigned to the closest taxon registered in GenBank. DNA extracts were analyzed via a 16S-metagenomics approach using two sequencers: the 454 GS-FLX and the MiSeq. The V4 region of the gene coding for 16S rRNA was amplified for each sample using barcoded universal primers. Amplicons were multiplexed and processed on the distinct sequencers. The resulting datasets were de-multiplexed, and each read was processed through a pipeline to be taxonomically classified using the Ribosomal Database Project. Altogether, 45 pathogenic bacterial genera were detected. The bacteria identified by RNA-Seq were comparable to those detected by 16S-metagenomics approach processed with MiSeq (16S-MiSeq). In contrast, 21 of these pathogens went unnoticed when the 16S-metagenomics approach was processed via 454-pyrosequencing (16S-454). In addition, the 16S-metagenomics approaches revealed a high level of coinfection in bank voles. CONCLUSIONS/SIGNIFICANCE We concluded that RNA-Seq and 16S-MiSeq are equally sensitive in detecting bacteria. Although only the 16S-MiSeq method enabled identification of bacteria in each individual reservoir, with subsequent derivation of bacterial prevalence in host populations, and generation of intra-reservoir patterns of bacterial interactions. Lastly, the number of bacterial reads obtained with the 16S-MiSeq could be a good proxy for bacterial prevalence.
منابع مشابه
Detection of bacterial pathogens from clinical specimens using conventional microbial culture and 16S metagenomics: a comparative study
BACKGROUND Infectious disease is the leading cause of death worldwide, and diagnosis of polymicrobial and fungal infections is increasingly challenging in the clinical setting. Conventionally, molecular detection is still the best method of species identification in clinical samples. However, the limitations of Sanger sequencing make diagnosis of polymicrobial infections one of the biggest hurd...
متن کاملEvaluation of direct 16S rDNA sequencing as a metagenomics-based approach to screening bacteria in bottled water.
Deliberate or accidental contamination of food, feed, and water supplies poses a threat to human health worldwide. A rapid and sensitive detection technique that could replace the current labor-intensive and time-consuming culture-based methods is highly desirable. In addition to species-specific assays, such as PCR, there is a need for generic methods to screen for unknown pathogenic microorga...
متن کاملComparing Bacterial Communities Inferred from 16s Rrna Gene Sequencing and Shotgun Metagenomics
16S rRNA gene sequencing has been widely used for probing the species structure of a variety of environmental bacterial communities. Alternatively, 16S rRNA gene fragments can be retrieved from shotgun metagenomic sequences (metagenomes) and used for species profiling. Both approaches have their limitations-16S rRNA sequencing may be biased because of unequal amplification of species' 16S rRNA ...
متن کاملDETECTION OF BACTERIA BY AMPLIFYING THE 16S rRNA GENE WITH UNIVERSAL PRIMERS AND RFLP
Background: There is a conserved portion in the 16S rRNA gene of bacteria which can be amplified by the universal PCR method. This fragment is 996 bp in length. In this method, only one set of universal primers is used for the amplification of the conserved region of the 16S rRNA gene, in common bacterial pathogens. Therefore, using the universal PCR method, these bacteria are detectable on...
متن کاملBacterial communities in PM2.5 and PM10 inside the cage broiler houses before and after disinfection
Background: Air in broiler houses is contaminated with considerable amounts of microbial aerosols, which affects the health of humans and birds. Thorough cleaning and disinfecting should be carried out to reduce particulate concentrations and minimize airborne microorganisms. Aims: To evaluate the effects of cleaning and disinfecting measures on bacterial commu...
متن کامل